<acronym id="6n1lx"></acronym>
    <acronym id="6n1lx"></acronym>
    <td id="6n1lx"><ruby id="6n1lx"></ruby></td>

    <acronym id="6n1lx"><strong id="6n1lx"></strong></acronym>

    <track id="6n1lx"></track>

    基于GaN和SiC的功率半導體將推動電力電子封裝集成和應用

    硅替代品的研究始于上個世紀80年代,當時研究人員和大學已經對幾種寬禁帶材料進行了實驗,顯示出在射頻、發光、傳感器和功率半導體應用中取代現有硅材料技術的潛力很大。在新世紀伊始,氮化鎵(GaN)和碳化硅(SiC)已經達到了足夠的成熟度,并獲得了足夠的吸引力,將其他潛在的替代品拋在腦后,引起全球工業制造商的足夠重視。

    在接下來的幾年里,重點是研究與材料相關的缺陷,為新材料開發一個定制的設計、工藝和測試基礎設施,并建立一個某種程度上可重復的無源(二極管)器件和幾個有源器件(MOSFET、HEMT、MESFET、JFET或BJT),這些器件開始進入演示階段并能夠證明寬帶隙材料帶來的無可爭辯的優勢。寬帶隙材料可以使半導體的工作頻率降低10倍,從而使電路的工作頻率降低10倍。

    對于這兩種材料,仍有一些挑戰有待解決:

    GaN非常適合低功率和中等功率,主要是消費類應用,似乎允許高度的單片集成一個或多個功率開關并與驅動電路共同封裝。有可能在在最先進的8-12“混合信號晶圓制造廠制造功率轉換IC。然而,由于鎵被認為是一種稀有、無毒的金屬,在硅生產設施中作為受主可能會產生副作用,因此對許多制造工藝步驟(如干法蝕刻、清洗或高溫工藝)的嚴格分離仍然是一項關鍵要求。此外,GaN是以MO-CVD外延工藝在SiC等晶格不匹配的載流子上或更大的晶圓直徑(通常甚至在硅上)上沉積,這會引起薄膜應力和晶體缺陷,這主要導致器件不穩定,偶爾會導致災難性的故障。

    基于GaN和SiC的功率半導體將推動電力電子封裝集成和應用

    GaN功率器件是典型的橫向HEMT器件,它利用源極和漏極之間固有的二維電子氣通道進行導通供電。

    另一方面,地殼中含有豐富的硅元素,其中30%是由硅組成的。工業規模的單晶碳化硅錠的生長是一種成熟的、可利用的資源。最近,先驅者已經開始評估8英寸晶圓,有希望在未來五(5)年內,碳化硅制造將擴展到8英寸晶圓制造線。

    SiC肖特基二極管和SiC MOSFET在市場上的廣泛應用為降低高質量襯底、SiC外延和制造工藝的制造成本提供了所需的縮放效應。通過視覺和/或電應力測試消除晶體缺陷,這對較大尺寸芯片的產量有較大的影響。此外,還有一些挑戰,歸因于低溝道遷移率,這使得SiC fet在100-600V范圍內無法與硅FET競爭。

    市場領導者已經意識到垂直供應鏈對于制造GaN和SiC產品的重要性。需要有專業基礎的制造能力,包括晶體生長、晶圓和拋光、外延、器件制造和封裝專業知識,包括優化的模塊和封裝,考慮到快速瞬態和熱性能或寬帶隙器件(WBG)的局限性,考慮最低的成本,最高的產量和可靠性。

    隨著廣泛和有競爭力的產品組合和全球供應鏈的建立,新的焦點正在轉向產品定制,以實現改變游戲規則的應用程序。硅二極管、igbt和超結mosfet的替代品為WBG技術的市場做好了準備。在根據選擇性拓撲結構調整電氣性能以繼續提高功率效率、擴大驅動范圍、減少重量、尺寸和組件數量,并在工業、汽車和消費領域實現新穎、突破性的最終應用,還有很多潛力。

    實現循環快速設計的一個關鍵因素是精確的spice模型,包括熱性能和校準封裝寄生體,可用于幾乎所有流行的模擬器平臺,以及快速采樣支持、應用說明、定制的SiC和GaN驅動IC以及全球支持基礎設施。

    接下來的十(10)年將見證另一次歷史性的變革,基于GaN和SiC的功率半導體將推動電力電子封裝集成和應用的根本性發明。在這一過程中,硅器件將幾乎從功率開關節點上消失。盡管如此,他們仍將繼續在高度集成的功率集成電路和低電壓環境中尋求生存。


    相關文章